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1. Project Goals and Tasks 
 
To achieve a revolutionary reduction in overall power consumption, computing 

systems must be constructed out of both inherently low-power structures and power-
aware (or even better energy-aware) hardware and software subsystems. Today’s most 
prevalent practices involve simple frequency scaling and modes where subsystems are 
merely powered on or off as needed. The energy expended per computational event 
(memory access or issuance of new instructions) is not, however, as adjustable, even 
when lower than peak performance is acceptable. This is particularly true as we move 
towards memory intensive hierarchical systems (such as register files, caches, SRAM, 
DRAM, Flash memory) where placement of data within the hierarchy has as much effect 
on energy expenditures as lowering the logic power. As modern processing systems 
begin to incorporate increasingly bigger and more complex storage hierarchies, it 
becomes absolutely imperative to incorporate techniques for managing such storage 
hierarchy in a manner that reduces the energy dissipation in the system as a whole, 
including both the processing (“logic”) and memory components. To go significantly 
beyond the current state of the art requires architectures with a wide dynamic range in 
adjustable performance/energy settings, and run-time software to dynamically manage 
these settings against real-time constraints. Additional energy savings will also come 
from the use of compilation techniques, programmer hints and run-time systems to 
control these settings or “gears”. In essence, we need a system that morphs to meet the 
performance needs of the systems with the least amount of energy. 

 
Consequently, the Morph project had two major goals. The first goal was to develop 

morphable architectures whose energy/performance characteristics can be shaped to meet 
available energy profiles [KFG+ 00]. The second goal of the Morph project was to 
develop tools and software which will configure the system, estimate power/energy 
requirements of the system accurately and place and manage data within a system so that 
these energy saving techniques can be achieved. 

 
The application area targeted by the Morph project was the general area of space 

applications for deep-space probes. Such applications have a large dynamic range of 
processing requirements: the processing and storage needs fluctuate dynamically as a 
function of the environment and the mission phase. Additionally, the energy sources for 
running these applications are highly constrained in a variety of ways, making it 
imperative to conserve as much power as possible for any and all computations that are 
performed. 

 
A third and implicit goal of the Morph project was to constrain our solutions to the 

design space of superscalar datapaths. Superscalar processors offer binary compatibility 
and high performance. Other solutions to achieving a high-performance, such as the use 
of a multi-processing platform requires a thorough redesign of existing applications, run-
time libraries and the operating system. Another reason for constraining our solutions to 
the space of superscalar CPUs had to do with the fact that the current and near-term space 
computing systems at JPL were based on a superscalar processor, the IBM PowerPC 750 
(PPC 750). We expected to use a PPC 750-based testbed that was developed at JPL in the 
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course of our Phase I effort to provide data that could be used to validate our architectural 
and system-level solutions in depth as part of our Planned Phase II effort (which was not 
funded). 

 
A fourth and another implicit goal of the Morph project was to concentrate on 

solutions that were technology-independent, as these are more universal in nature. It is 
also generally agreed up on that such higher-level, technology independent solutions have 
the potential for providing the highest degree of energy and power savings. All of the 
solutions developed by the Morph project are orthogonal to the traditional techniques that 
employ voltage and power scaling. Consequently, voltage and frequency scaling can be 
deployed in conjunction with our proposed scheme for reducing the energy and/or power 
requirements further. 

 
The major tasks carried out in the course of the Morph project were as follows: 
 

1. Scenario Development: Develop some target profiles of energy usage versus 
performance needs as a function of time based on some potentially real applications, 
and augment this with suggested benchmark programs. 

2. Morphable Architecture: Develop a complete node organization and architecture 
whose performance/energy characteristics can be dynamically adjusted using a 
variety of energy-performance “gears”. 

3. Baseline Characterization: Characterize energy versus performance numbers for a 
baseline family of subsystems. 

4. Energy Aware Data Placement: Develop some energy-aware data placement 
policies for mixed memory hierarchies. 

5. Adaptive Configuration Algorithms: Develop algorithms which, given both 
expected performance/energy profiles and/or current run-time energy-relevant 
measurements, provide appropriate settings for the morphable architecture. 

6. Augmented Run-time: Define and prototype as appropriate APIs for run-time 
systems for the morphable architecture which allows specification of data placement 
hints or explicit data movements within the hierarchy from the programmer or 
compiler, along with incorporation of real-time measurements to control system 
settings.  

7. Demonstration and Evaluation: Using the simulator from Task 2, extrapolation of 
the energy/power gains of this architecture for a variety of potential design points.  

As detailed in our quarterly reports and past annual reports, all of these tasks have 
been completed successfully. The bulk of the results developed as part of the Morph 
project have been published in 5 journal papers and more than 20 fully-reviewed and 
leading conferences in relevant areas. Two patent applications on inventions related to 
the Morph project have also been filed.  
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In this final report, our goal is to provide a concise summary of the major results of 

the Morph project and develop a set of recommendations for the design of future energy-
efficient computing systems for deep-space probes. Many of the solutions developed in 
the Morph project are also applicable to mainstream superscalar processors and systems. 
Table I summarizes the main results pertaining to each of the seven tasks described above 
and also provides the “roadmap” information for this report. 
 

Task number/ 
description 

Relevant solutions/activities Where 
described in this 

report 
1. Scenario 

development 
a) Energy/performance measurements for 

actual space applications from PPC750-
based testbed developed for this project 

b) Energy-performance measurements for 
baseline system from the “Accupower” 
simulator developed in this project 

Sections 2 and 3 

2. Morphable 
Architecture 

a) Zero-byte encoding for processor, 
storage and interconnections 

b) Energy/power reduction of the issue 
queue 

c) Dynamic allocation of datapath 
resources 

d) Exploitation of short-lived variables in 
reducing reorder buffer and register file 
complexity/power 

e) Variable-cluster superscalar datapath 
f) Inherently low-power circuit 

components 

Sections 4.1 
through 4.7 

3. Baseline 
characterizations 
for a number of 
configurations 

Integrated into evaluation of techniques 
associated with Task 2. 

Sections 4.1 
through 4.7. 

4. Energy-aware data 
placement 

a) Compile-time data placement. 
b) Dynamic data movement within 

register-caches and ROB integrating 
physical registers 

Sections 5, 4.5 
and 4.6. 

5. Adaptive 
configuration 
algorithm 

a) Dynamic allocation of datapath 
resources 

b) Linux run-time system implementation 
for matching energy-performance 
characteristics 

Sections 4.2 and 
6. 

6. APIs for 
morphing/adaptati
on/placement 

Integrated into solutions developed in Tasks 
4 and 5. 

Sections 4, 5 and 
6 

7. Demonstration 
and evaluations 

Integrated into the evaluations of the 
techniques developed in Tasks 2, 4 and 5 

Sections 2, 3, 4, 
5 and 6 

 
 

Table 1. Tasks, Results and Roadmap for the Report 
 

To provide a more logical framework for this final report, we break down and present 
the main results of the Morph project into the following parts: 
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• The PPC750-based Testbed and Measurements on the Characteristics of Space 

Applications 
 

• The Accupower Toolset for Energy and Performance Estimations 
 

• Microarchitectural-Level Morphing Techniques for Energy-Efficiency 
 

• Energy-Aware Data Placement 
 

• Run-time System to Tune Energy/Performance Characteristics 
 

• Final Results and Recommendations 
 
 
A bibliography listing the main publications resulting from this report is included at the 
end of this report. 
 
2. A Testbed for Characterizing Applications for Deep-Space Probes 
 

As part of the Morph project, we have developed a testbed of a future deep space 
mission, DEEP IMPACT, and instrumented it to provide insight into very realistic 
processing loads and timing requirements under a variety of scenarios. Our original 
project goal was to use this data to baseline time and power data against which our 
proposed new architectures would be, and have been, evaluated. However, the wealth of 
data from this testbed is useful for far more than just our project, since they represent a 
unique view into a type of application that will become of increasing importance, namely 
embedded systems involving multiple different tasks running under real-time constraints.  
 
2.1 Testbed Features 

 
The energy-estimation testbed itself is modified single board computer (SBC) of the 

same type and performance as is projected to fly in several future missions [KNA+03a, 
KNA+ 03b]. Modifications to the board include chip extenders to allow access to 
individual chips. This testbench was then connected to a testbed that provided a 
simulation of the rest of the spacecraft, in real time. A methodology was then developed 
that allowed instrumentation connected to this testbench to perform significant and 
detailed power and timing measurements, while application scenarios were being run. 

 
We opted for a single-board computer (SBC) designed by WindRiver Systems that 

housed a Motorola PowerPC 750 processor, 128 Mbytes of RAM, a serial port, and two 
PCI ports. It runs VxWorkstm as its operating system, just as the real system. One PCI 
port contained a Network Interface Card, while the other PCI port contained a reflective 
shared memory card. This board was a prime choice due to its use of a PGA (Pin Grid 
Array) connection to attach the processor chip to the board. This allowed us to access all 
the pins on the processor, and thus directly measure current between the power and 
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ground pins on the processor. Furthermore, access to all the I/O pins allows the use of a 
logic analyzer to accurately obtain a timing profile of the processor's interaction with 
peripheral devices, e.g. bridge controllers, memory, etc.  

 
 Modifications were made to the SBC to allow access to circuit connections designated 

for power to the processor. An oscilloscope with a current probe measured the current 
being drawn by the CPU and memory. A power distribution module provided easy access 
via a connector to the board housing the processor and memory. Calculating power from 
the current measurements was simply done by measuring the voltage at the CPU and 
memory and using the product of the two to determine the instantaneous power 
consumption. We refer to this testbed as the “power measurement” testbed. 

 
2.2 Monitoring Facilities on the Testbed 
 

JPL supports an Autonomous Test Bench, known as Babybed, which had been 
previously been developed for mission software development and performance 
benchmarking. The system runs on two processors that share a common VME or PCI 
back plane. One processor runs a simulation of a virtual vehicle and the second processor 
runs the control software that drives the simulated vehicle, currently a three-axis 
stabilized, free-floating spacecraft. The simulation is a fully end to end real-time software 
simulation which allows actual mission fight software to communicate with virtual 
spacecraft devices like actuators and sensors, as well as power, telecom and science hard-
ware. As commands are issued and executed by the virtual devices, the spacecraft 
dynamics are affected accordingly and the sensor models sense the results. 

 
The autonomous test bench also includes two single-board computers communicating 

via shared memory implemented using two reflective memory cards and a fiber optical 
cable providing transparent communication between them. One of the SBCs is 
responsible for running the flight software. The other single-board computer is 
responsible for running a space environment simulator as inputs to the flight software. A 
performance profile was generated for the flight software in terms of cache misses, CPU 
utilization, and MIPS. 

 
The test bench described in Section 2.1 was ported to the autonomous test bench by 

replacing the single-board computer running the flight software with the power 
measurements test bench. Because the power measurements test bench provided two PCI 
slots, a reflective memory card with a PCI interface was used to enable communication of 
the space environment simulator with the power measurement test bench. 

 
2.3 Power Measurement Methodologies 
 

 Power profiling was performed at three levels of granularity. At the fine-grain 
level, power was measured at the instruction-level. The instruction set of the processor 
used for experiments, a Motorola PowerPC 750, was profiled comprehensively, i.e. a 
measurement for each instruction in the instruction-set was obtained. The basic idea for 
profiling was to place a single instruction into a loop, and repeat it until it reaches a 
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steady state. At this point we could measure the power of that instruction. 
 
At the medium-grain level, power was measured at the event-level. Events at the 

micro-architecture level included data-forwarding, cache accesses, floating-point 
pipelining, instruction units, etc. A sequence of instructions was programmed with the 
understanding that certain events would take place. For example, sequencing an add 
instruction with dependencies on each previous add instruction would invoke the data- 
forwarding mechanism to avoid pipeline stalls. 

 
Lastly, coarse-grain measurements were performed at the operating system level by 

analyzing multiple running tasks and associated power profiles with the tasks. This paper 
focuses on these results. 

 
To identify tasks that were executing during a test we invoked a WindRiver tool called 

WindView. This allowed us to generate a timeline of software activity. The start and stop 
time of each task when it took control of the processor was shown graphically and could 
also be stored in a database file. Combined with the power measurements, the 
relationship between the power profile of software and the tasks running were trivial. 

 
Power profiles were taken from a subset of the entire software suite. The modules we 

profiled included image compression, orbit determination, maneuver planning, and 
several operating modes. The first three mentioned are of importance because they show 
dynamic profiles that reflect their computational complexity. 

 
 The timing profiles produced by WindView became very useful in determining 

which task was consuming power at different times. There is a close correlation between 
power profiles and timing profiles. 

 
2.4 The Application Suite 
 

The application suite used in Morph is derived from the Deep Space 1 (DS1) mission, 
and modified to reflect potential use on the Deep Impact mission [KNA+ 03b]. Deep 
Impact involves a comet orbiter that includes an instrumented spike-like probe. After 
release from the orbiter, the probe will impact the comet. Visual analysis of the dispersal 
from the orbiter should yield significant insight into the interior nature of the comet. 

 
The DS1 flight software is comprised of some 60 tasks that are initiated and initialized 

at startup, and run forever. The tasks vary in priority. Some tasks wake up and execute in 
response to interrupts, and others run when the scheduler activates them. The software 
operates loosely on a 1 second cycle. Nominally all tasks run at least once every second. 
Some tasks run more frequently (4Hz and 8Hz rates). The general procedure is for a task 
to wake up, run and go back to sleep (pending state). 

 
When a task wakes up, it performs some basic duties and/or check its inter-process 

communications (IPC) queue(s). It will attempt to complete its duties and/or process all 
the data in its queue(s) before it is suspended by the operating system. Any unfinished 
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business is picked up the next time the task awakes. Naturally, tasks with high priority 
have more opportunity to execute each second than lower priority tasks. As a result, busy 
high priority tasks may prevent lower priority tasks from ever waking up within some 
second. 

 
When there is not much activity and all tasks finish early within the 1 second interval, 

the tIdleTask uses the remaining time. As system activity increases, the amount of time 
the tIdleTask runs becomes less and less.  

 
Due to ITAR restrictions, the DS1 flight software is not publicly available to the 

research community. As an alternative, a software module from the suite was modified so 
that it could be made publicly available. The module chosen, MICAS, is an image 
compression algorithm. The computational complexity coupled with the need for 
generous amounts of memory I/O made this a good choice for power profiling and 
optimization. 
 
2.5 Simulated Flight Scenarios and Measurements 
 

Seven different flight scenarios were profiled for power consumption and time traces. 
The first scenario (prelaunch) simulated the flight computer while in an idle state prior to 
vehicle launch. The second scenario was to profile the flight after a vehicle launch. The 
third and fourth scenarios (DSEU_Scan and DSEU_Burst) involved placing the flight 
computer into different modes corresponding to their DSEU operation. The remaining 
scenarios involved image compression, orbit determination, and maneuver planning.  

 
The Motorola PowerPC 750 can be configured to enable access to an L2 cache or to 

bypass the L2 and go directly to memory. In addition, a dynamic power management 
(DPM) feature, based on clock gating, can be enabled or disabled. Most of the seven 
scenarios mentioned above were run in three modes: L2 enabled with DPM on, L2 
enabled with DPM off, and L2 accesses disabled with DPM off. 

 
The traces as gathered from the testbench formed the basis for the load analysis of the 

Deep Impact code done for the Morph project. This analysis was done in three steps - a 
preprocessing step, an interval identification and analysis step, and a power modeling 
step. 

 
The trace logs consisted of literally thousands of entries, each giving start time and 

task number. These were first inspected to eliminate recording errors, and then 
preprocessed to remove effects of the task tracing hooks by replacing all routines known 
to be part of the testbench system, and not to be found in the expected flight software, by 
idle. Multiple neighboring entries to the same task (primarily idle) were then collapsed 
into one, and each remaining trace entry augmented from outside information with the 
task priority (in the current state of the flight software, priority assignments are static, and 
range from a highest level of “0”, to a low idle level of “255”). A variety of global 
statistics were then computed for each trace, such as total time, tasks started per second, 
total busy and idle time, etc., along with statistics on each task, such as the number of 
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times it was run, the minimum, maximum, and average execution times, and the standard 
deviation in this time. 

 
From each preprocessed trace, sequences of processing “intervals” were identified, 

where one interval starts at the end of an idle period, after which a string of one or more 
real tasks were executed, and terminated with some other idle period. For each such 
interval, the overall busy and idle periods were computed. Histograms were then 
developed from this data. 

 
A key statistic taken from each such interval for use in the power modeling analysis 

was the ratio of the total interval time to the processing time. This ratio indicates by how 
much a factor the CPU’s performance could be slowed down during the processing 
period to eliminate the idle period, and run in a lower power mode. 

 
 

2.6 Application Characteristics 
 

The testbed was used to investigate the characteristics of each of the 15 scenarios. The 
results are also summarized in [KNA+ 03b]. Some of the parameters measured were: 

 
 
1) the total time of the simulated mission phase, 

2) the total number of original traces from the trace log, expressed as an average per 
second, 

3) the equivalent number of scheduling “events” per second after eliminating the non-
operational tasks and combining idle tasks, 

4) the average number of intervals per second that would be observed in the mission 
phases, 

5) the percent of the total scenario time that the microprocessor was idle, 

6) the percent of the time that the processor was busy executing code (100% minus the 
prior number). 

 

Figure 1 represents an example of the measurements made using the testbed and shows 
three of the more important of these characteristics grouped by mission phase, and 
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Figure 1. Sample measurements from the Deep Impact Suite
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ordered in rough order of load on the CPU (% Busy). In all of the measurements depicted 
in Figure 1, three measurements were made for each mission phase: both L1 and L2 
caches on (“on-on”), L1 cache on and L2 cache off (“on-off”) and both caches turned off 
(“off-off”). Some of the main conclusions from our measurements are as follows: 

 
• A key observation is the broad range of busy times, from about 3% to 60%, for 

a 20 to 1 variation. This verified a key premise for the Morph program as a 
whole that processing loads were highly variable during missions, and that 
knowing that fact, and having control over power/performance of the CPU 
could lead to dramatic overall mission power and energy savings. 

 
• One interesting observation that the data doesn’t always play out as one would 

expect is variations as the settings for L2 and DPM are changed. For example, 
one would expect the most busy configuration to be the ones where L2 if off, 
but this is not true for Prelaunch. A similar seeming inconsistency can be seen 
in the “Intervals per second,” where variations are strongest for the middle 
phases when the DPM is turned off. 

 
• A more general observation is that for the most part, the number of tasks 

scheduled per second changes dramatically versus mission phase (as expected), 
but does not change much versus configuration. This makes sense, since in 
each phase one would expect the same mix of tasks to be executed at the same 
rates, regardless of the loading on the microprocessor. 

 
To summarize, the analysis of the trace data for the Deep Impact application reveals 

the presence of a large dynamic range of the processing activities across the various 
phases of this application. CPU utilizations in-between idle periods can vary 
dramatically; the number of scheduling events within each phase as well as the number of 
intervals per second within a phase can both vary significantly from one phase to another. 
Understanding the dynamics of these statistics will be invaluable in understanding how 
best to craft efficient real-time embedded processing systems, especially for space 
applications. Implications of the characteristics of the Deep Impact applications in 
designing an energy-efficient space computing systems are described in [KNA+ 03]. 

 
3. The AccuPower Toolset 
 

The AccuPower toolset [PKG 02] was developed as part of this project to accurately 
measure the energy-performance characteristics of baseline configurations and to 
evaluate the efficacy of the various techniques developed in this effort for enhancing the 
energy-efficiency of superscalar processors. 

 
Several power estimation tools for processors have been designed, including Wattch 

[BTM 00], Simplepower and TEM2P2EST [CAI 99] to name a few. Simplepower is used 
only for simple 5-stage scalar pipelines and only models the execution of integer 
instructions; it is not applicable to superscalar processors. The major drawback of other 
tools is their reliance on the Simplescalar simulator [BA 97], which lumps many critical 
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datapath artifacts like the issue queue (IQ), the reorder buffer (ROB) and physical register 
files (PRFs) into a unified structure called Register Update Unit (RUU), quite unlike the 
real implementations, where the number of entries and the number of ports in all these 
structures are quite disparate. Consequently, power dissipation cannot be estimated 
accurately on a per-component basis. Considering that in many cases, these components 
collectively contribute to more than half of the overall power dissipation of the chip, it is 
necessary to have facilities that allow the design space of these components and their 
interactions be modeled as accurately as possible. This is exactly one of the areas where 
AccuPower provides a more accurate simulation/power estimation framework than 
existing tools. Specifically, the main features of the AccuPower toolset are as follows: 
 

Detailed cycle-level simulation of all major datapath components and interconnections 
that mimic the actual hardware implementation, including separate and realistic 
implementations of the issue queue, register files, reorder buffers, load-store queues and 
forwarding mechanisms. 
 

• Detailed and accurate simulations of the on-chip cache hierarchy (including 
multiple levels of on-chip caches, interconnections, arbitration and chip-level I/O 
traffic). 

 
• Built-in models for three major variants of superscalar processor designs that are 

in wide use. 
 

• Well-instrumented facilities for collecting datapath statistics of relevance to both 
power and performance at the level of bits, bytes (for data and instruction flows) 
within logic blocks and subsystem-level components and the entire processor. 

 
• Implementations of cutting-edge techniques for power/ energy reduction at the 

microarchitectural level, logic level and circuit level, as well as techniques based 
on clock gating, voltage and frequency scaling to facilitate the exploration of the 
design space. 

 
• Use of energy/power dissipation coefficients for energy dissipating events within 

datapath components derived from SPICE measurements of actual layouts of 
these components. These coefficients are used in conjunction with transition 
counts obtained from the microarchitectural simulation component of AccuPower 
to accurately estimate the power/energy dissipations. Coefficients for leakage 
dissipations are also provided. 

 
We believe that short of an actual implementation, AccuPower’s power estimation 

strategy is as accurate as it gets. 
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3.1 Datapath Styles Supported 
 

Three widely used design variations of superscalar processors that are somewhat 
prevalent are modeled in the AccuPower toolset. These datapath variations are as 
follows: 
 
Datapath A: Here, input registers that contain valid data are read out while the 
instruction is moved into the IQ. As the register values required as an input by 
instructions waiting in the IQ (and in the dispatch stage) are produced, they are forwarded 
through forwarding buses that run across the length of the IQ. The dispatch buffer entry 
for an instruction has one data field for each input operand, as well as an associated tag 
field that holds the address of the register whose value is required to fill the data field. 
When a function unit completes, it puts out the result produced along with the address of 
the destination register for this result on a forwarding bus. Comparators associated with 
each IQ entry then match the tag values stored in the fields (for waited-on register values) 
against the destination register address floated on the forwarding bus. On a tag match, the 
result floated on the bus is latched into the associated input field. Since multiple function 
units complete in a cycle, multiple forwarding buses are used; each input operand field 
within an IQ entry thus uses a comparator for each forwarding bus. Examples of 
processors using this datapath style are the IBM Power PC 604, 620 and the HAL 
SPARC 64. 
 
Datapath B: Here, even if input registers for an instruction contain valid data, these 
registers are not read out at the time of dispatch. Instead, when all the input operands of 
an instruction waiting in the IQ are valid and a function unit of the required type is 
available, all of the input operands are read out from the register file (or as they are yet to 
be written to the register file, using bypassing logic to forward data from latter pipeline 
stages) and the instruction is issued. In this case, the IQ entry for an instruction is 
considerably narrower compared to the IQ entries for Datapath A, since entries do not 
have to hold input register values. The dispatch/issue logic can be implemented using a 
global scoreboard that keeps track of instructions and register/FU availability. 
Alternatively, an associative logic similar to that of Datapath A can be used to update the 
status of input registers for instructions waiting within the IQ. Examples of processors 
using this datapath style are the MIPS 10000, 12000, the IBM Power 3, the HP PA 8000, 
8500, and the DEC 21264. 
 
Datapath C: Here, the ROB entry set up for an instruction at the time of dispatch 
contains a field to hold the result produced by the instruction - this serves as the analog of 
a physical register. We assume that each ROB entry may hold only 32-bit long result, 
thus requiring the allocation of two ROB entries for an instruction producing a double-
precision value. A dispatched instruction attempts to read operand values either from the 
Architectural Register File (ARF) directly (if the operand value was committed) or 
associatively from the ROB (from the most recently established entry for an architectural 
register, in case the operand value was generated but not committed. Source registers that 
contain valid data are read out into the DB entry for the instruction. If a source operand is 
not available at the time of dispatch in the ARF or the ROB, the address of the physical 
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register (i.e., ROB slot) is saved in the tag field associated with the source register in the 
IQ entry for the instruction. Forwarding to the waiting IQ slots is performed similar to 
Datapath A. Examples of processors using this datapath style are the Intel Pentium II and 
Pentium III. 
 
3.2 Implementation Details 
 

The AccuPower tool consists of the three components: a microarchitectural simulator, 
which is a greatly modified version of the Simplescalar; the VLSI layouts for major 
datapath components and caches in a 0.5micron process; and power coefficients obtained 
from the SPICE simulations. 

 
To support the three superscalar datapath configurations discussed in section 3.1, we 

significantly modified the Simplescalar simulator [BA 97] and implemented separate 
structures for the DB, the ROB, the rename table, the physical register files and the 
architectural register files. Three versions of the simulator were designed - one for each 
datapath configuration discussed above. We also accurately modeled the pipeline 
structures and various interconnections within the datapath, namely the dispatch buses, 
issue buses, result buses and commit buses. In a typical superscalar processor, multiple 
sets of such buses are needed to sustain the dispatch/issue/commit rate. Traffic on each 
such bus and read/write activity within the register files implementing the datapath 
storage components are separately monitored and analyzed as discussed later. 

 
The extent of our modifications to the Simplescalar can be gauged by the fact that 

barely 10% of the original code was retained. The sim-outorder.c file was completely 
rewritten to support a true cycle-by-cycle out-of-order instruction execution. This is in 
contrast to the original Simplescalar code, where instructions are actually executed in-
order at the dispatch stage and the effects of out-of-order execution are achieved through 
the convoluted manipulations with the RUU. Significant modifications have also been 
incorporated into the cache simulator, as discussed below. Specifically, the changes that 
were made to the Simplescalar to simulate the realistic superscalar pipelines are as 
follows: 
 
(i) We split the monolithic cache access stage as used in Simplescalar into two stages to 
mimic the real-world situation where cache accesses - even L1 cache accesses - are 
typically performed in multiple cycles and provided a support for pipelined cache. 
 
(ii) We modeled the contention for the bus between L1 and L2 caches. This is important 
because the L1 caches are typically split with separate caches for instructions and data. 
L2 cache, however, is typically unified. The situation when both I1 miss and D1 miss 
occurs in the same cycle is certainly possible and they require proper modeling to 
arbitrate for the access to the L2 cache. 
  
(iii) Along similar lines, we modeled the contention for the off-chip interconnection from 
the L2 cache to the DRAM modules. 
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(iv) The decode stage of the Simplescalar datapath, where instruction dispatching and 
register renaming is performed, was split into two stages, as it is unrealistic to perform 
the fairly complicated operations of dispatching, register renaming and source register 
readout in a single cycle. The only exception to this is Datapath C, due to the use of 
associative addressing for performing a source physical register lookup instead of an 
indirect addressing through a rename table. 
 
(v) We also assumed realistic delays on the interconnections, noting that it takes a full 
cycle to distribute the result produced by one of the FUs to the waiting operands in the 
IQ. 
 
(vi) For Datapaths A and B, the branch misprediction handling was implemented by 
waiting until all instructions prior to the mispredicted branch commit, after which the 
contents of the ROB, the IQ, the physical register files and the rename table were flushed 
and the execution was restarted from the correct PC. Of course, the branch misprediction 
penalty for Datapaths A and B was higher than in Simplescalar implementation. For 
Datapath C, we tagged each instruction with the id of the preceding branch and 
selectively flushed the ROB and the IQ on a misprediction by using the associative search 
for the appropriate tags. This is doable for the Datapath C, because the ROB incorporates 
rename table and physical register files. For Datapaths A and B, such selective flushing 
results in the inconsistent values of the valid bits stored within physical register files. 
 

To summarize, we attempted to design a simulator that would closely mimic the actual 
microarchitecture and hardware implementations of real CPUs on a cycle-by-cycle basis. 
The focus of the AccuPower tool is to facilitate the exploration of the design space of 
superscalar processors and gauge the impact of well-used and cutting-edge techniques for 
saving power and/or energy. The tool also supports the exploration of circuit-level 
techniques and the more standard power reduction techniques like voltage and frequency 
scaling. 
 
3.3 VLSI Layouts 
 

For the estimating the energy/power for the key datapath components using 
AccuPower, the transition counts and event sequences gleaned from the 
microarchitectural simulator were used, along with the energy dissipations for each type 
of event, as measured from the actual VLSI layouts using SPICE. CMOS layouts for the 
on-chip caches, DB, PRF, ARF and DB in a 0.18 micron 4 metal layer CMOS process 
were used for the key datapath components to get an accurate idea of the energy 
dissipations for each type of transition. 

  
The register files that implement the ROB and IQ were carefully laid out to optimize 

the dimensions and allow the use of a clock speed of up to 1 GHz. A Vdd of 3.3 volts is 
assumed for all the measurements. (The cache determined the value of the clock cycle 
time, as obtained from the cache layouts for a two-stage pipelined cache in the same 
technology.) In particular, these register files feature differential sensing, limited bit line 
driving and pulsed word line driving to save power. Augmentations to the register file 
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structures for the IQ (mainly in the form of comparators with each of the 3 source 
operand fields and the four result/tag buses) were also fully implemented; a pulldown 
comparator was used for associative data forwarding to entries within the IQ and the 
device sizes were carefully optimized to strike a balance between the response speed and 
the energy dissipations. For each energy-dissipating event, SPICE measurements were 
used to determine the energy dissipated. These measurements are used in conjunction 
with the transitions counted by the hardware-level, cycle-by-cycle simulator to estimate 
dynamic energy/power accurately. Actual layout data was also used for estimating the 
leakage power of the layouts in the smaller feature sizes. 
 
3.4 Speeding up the AccuPower Tool - Multithreading 
 

The instrumentation needed to determine the bit level activities within data flow paths 
and data storages (both explicit and implicit) and log all major switching activities slows 
down the simulation drastically. To get reasonable overall simulation performance with 
all the instrumentation in place, we resorted to the use of multithreading. Specifically, we 
use a separate thread for the data stream analysis. The two-threaded implementation is 
run on SMPs to get an acceptable level of simulation speed - one that approached close to 
that of the original Simplescalar without the heavy instrumentation. The data acquired 
from basic instrumentation within the main simulation thread is buffered and fed into a 
separate thread where it was analyzed for the lack of entropy within significant byte 
slices and all byte slices within a data item as well across consecutive data items within a 
data stream. 

 
With a single thread implementing all of the simulation, instrumentation and analysis, 

the overall simulation speed was reduced by as much as 40% compared to the original 
Simplescalar simulation without any modification and instrumentation. With both threads 
in place, and with the use of inter-thread buffers of an optimized size, the overall 
simulation time achieved was often significantly better on a SMP compared to the single-
threaded implementation. The performance of the dual-threaded version was also 
acceptably close to that of the original Simplescalar simulator without any of the 
enhancements and the instrumentation. 

 
The AccuPower toolset was extensively used in the bulk of our studies related to 

tradeoffs between power and performance in the relevant baseline configurations as well 
as to evaluate the improvements in the overall energy-efficiency of the processor when 
the morphing techniques described in the next section were used. 
 
4. Microarchitectural-Level Morphing Techniques for Energy-Efficiency 
 

As part of the Morph project, we investigated microarchitectural-level morphing 
techniques for dramatically enhancing the overall energy-efficiency of a superscalar 
processor in the following three dimensions: 
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• At the level of bit-slices and byte-slices: the technique developed for this 
dimension exploited the common occurrences of zeros in the higher-order bits of 
results and stored data [GPK+ 00]. 

 
• At the level of datapath components: the techniques developed here improved the 

energy-efficiency of large datapath structures/subsystems like the issue queue 
[KGPK 01, PKE+ 03c], the load-store queues, caches, register files and reorder 
buffers [KEP+ 03a, PKE+ 04b, KPE+ 04a]. One of the techniques developed in 
this category dynamically activated and deactivated regions of some key datapath 
components to adapt the datapath to the dynamic characteristics of the 
applications [PKG 01]. 

 
• At the level of clusters: the main technique developed in this category was an 

adaptive technique for a multi-clustered datapath where the issue rate and the 
number of clusters were dynamically adapted to match the characteristics of the 
applications [ZK 01]. 

 
In virtually all of these solutions, relevant circuit-level requirements, where needed, 

were also evaluated in depth. We now describe these solutions in some depth. 
 
4.1 Squeezing Out Zeros: Selective Byte-Slice Activation 
 

The datapath width of a typical superscalar processor (currently at 32 bits or 64 bits) is 
grossly underutilized in many situations. This is because many data values - often as 
much as 50% - flowing on the datapath or stored in the various implicit or explicit storage 
structures like register files, caches, issue queue, reorder buffer have leading zeros that do 
not contribute to precision/significance of the data. Such a behavior stems from the use of 
small literal values, byte operations implemented with masking and shifting, use of 
extended precision formats, use of zero padding within unused fields of instructions etc. 
By encoding bytes containing all zeros using a single additional bit per byte, significant 
energy savings can be realized within function units [BM 99], within instruction caches 
[VZA 00], and within superscalar datapaths [GPK+ 00]. The circuit techniques used for 
implementing such encoding and decoding of bytes containing all zeros are simple, and 
result in energy savings within all datapath components and interconnections [GPK 01]. 
It is also shown in [GPK+ 00] and [GPK 01] why it makes sense to encode a run of zeros 
at the level of bytes instead of encoding a run of arbitrary number of consecutive zeros in 
the data. 

 
Figure 2 shows several representative plots justifying the feasibility of zero byte 

encoding for a typical superscalar datapath. In Figure 2 (a), the percentage of leading zero 
bytes and zero bytes throughout the operand, weighted and averaged over 32-bit and 64-
bit operands, are shown for individual SPEC 95 benchmarks. For the integer benchmarks, 
which are dominated by mostly 32-bit integer data streams, roughly 47% of the leading 
bytes are all zeros, while about 49% of the bytes contain all zeros (including all zero 
bytes in the leading bit positions). For the floating point benchmarks, which consist of 
32-bit integers, 32-bit floats and 64-bit doubles, the weighted average shows that roughly 
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32% of the leading bytes are all zeros while 37% of the bytes in the data streams contain 
all zeros. The floating point numbers account for the higher difference between the 
number of leading zero bytes and the number of zero bytes throughout the operands. 
Figure 2 (b) shows the distribution of zero bytes throughout the operands for some 
specific data flow paths (the dispatch, issue, result and the commit buses.) Considerable 
energy savings will be achieved within all datapath components such as caches, register 
files, the dispatch buffer, the re-order buffer and function units if the presence of leading 
bytes with all zeros and bytes containing zeros throughout the operands are exploited.  
 

In Figure 2 (c), we show what happens when the zero valued bytes are not driven on 
transfer paths and, in addition, bit values within the non-zero valued bytes that do not 
change from their prior-driven values on the interconnection (driven from the same 
source or a different sources) are also not driven. The combined amount of bit slices that 
do not have to be driven in this case is in the range of 65% to 81% on the aforesaid buses. 
This result suggests that a considerable amount of power can be saved in transferring data 
on these interconnections, particularly as wire capacitances begin to dominate in 
implementations that have smaller feature sizes. 
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Figure 2a. Percentage of zero bytes averaged over all operand sizes and all data streams 
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Figure 2c. Percentage of bit slices not driven when zero bytes are encoded and bit positions that did not change in 
value from the last cycle are not driven
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4.2 Adapting Datapath Resources to Match Program Dynamics 
 

The “one-size-fits-all" philosophy used in allocating datapath resources results in the 
overcommitment of datapath resources like register files, the issue queue and the reorder 
buffer. Such structures have power dissipations that grow as polynomial functions of size, 
number of ports, and need for associative search. Our approach to minimizing the power 
requirements of the datapath is to use a dynamic resource allocation strategy that tries to 
closely track the actual dynamic resource demand of the executing program [PKG 01]. In 
a typical superscalar datapath, controlling the allocation of a single datapath resource 
such as just the issue queue - is not sufficient for realizing a high degree of energy 
efficiency. This is because of the correlation among the usage of resources such as the 
issue queue (IQ), reorder buffer (ROB - integrating the physical register file,) and the 
load/store queue (LSQ), where load and store instructions are dispatched.  

 
We studied the correlations among the occupancies (number of valid entries) of the IQ, 

the ROB and the LSQ in the context of our experimental framework. Representative 
results for one integer (ijpeg) and one floating point (fpppp) benchmark from SPEC 95 
suite are shown in Figures 3 and 4. Figures 3 (a) and 4 (a) show the occupancies of the 
three resources for fpppp and ijpeg benchmarks respectively, and Figures 3(b) and 4(b) 

Figure 3a. Occupancies of the IQ, the ROB and the LSQ (fpppp) 
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Figure 3b. Datapath resource occupancy ratios (fpppp) 
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show the ratios of these occupancies. Measurements were taken for 200M committed 
instructions after skipping the first 200M. For each benchmark, we recorded and cleaned 
the average occupancies after every 1 million committed instructions and then graphed 
the results. 

 
As seen from these graphs, the occupancies of the three resources are positively 

correlated. This suggests that resizing only one datapath resource is insufficient - in fact, 
if the sizes of other resources are not dynamically adjusted as well, these resources will 
remain overcommited most of the time. Another observation from Figures 3 and 4 is that 
it is difficult, if not impossible, to adjust the sizes of multiple resources by monitoring 
one of these resources and rescaling the number of active partitions within other 
resources proportionately. This is primarily because the ratios of the resource 
occupancies also change drastically across program's execution. For example, for fpppp 
benchmark, the ratio of the ROB occupancy to the IQ occupancy varies between 4 and 12 
in the time interval shown (Figure 3 (b)). One can consider resizing schemes, where the 
actual resource occupancies and their ratios are periodically sampled for a short duration 
and the appropriate prescaling coefficients are then set. However, this would result in the 
complication of control logic and besides, monitoring hardware would still be needed for 
every structure anyway, even though it would only be used during the set-up periods. For 
these reasons, we opted to perform the independent monitoring of individual datapath 
resource usages and use this information to dynamically adjust the size of each resource 
separately. In the next section, we explain the details of our resizing strategy. 

 
We primarily investigated the use of simple techniques to resize the IQ, the ROB 

(integrating physical registers) and the LSQ independently. In particular, these 
components are partitioned and the number of active (i.e., powered up) partitions is 
chosen dynamically to closely track the actual demands of the program. Downsizing the 
components by shutting off one or more active partitions is done at periodic intervals, at 
the end of an update period. The actual occupancies (i.e., number of allocated units) is 
measured several times within an update cycle and its average at the end of an update 
period is used to drive the downsizing decision: if the average occupancy is lower than 
the total combined capacity of the currently active partitions by one or more partitions 
worth, then the overcommitted partitions are marked for turning off, with the actual 
turnoff taking place later when allocated entries within these marked partitions are used 
up/consumed. By sampling the resource usage periodically (instead of on a continuous 
basis, as done in [BAS+01, FG 01]) for the issue queue only, we conserve dissipations 
within the monitoring logic for the downsizing. Our results also reveal that the error 
arising from the computations of the average occupancy by taking the average occupancy 
measured at discrete points (at every sample interval) is tolerable since significant energy 
savings are achieved using our approach. Although the results given here shows the 
savings on dynamic/switching power, dynamic deallocation of partitions also saves 
leakage power that would be otherwise dissipated within the IQ, ROB and LSQ. 
We also compensate for any inaccuracy in estimating the average occupancy of a 
resource by taking a very aggressive approach for resizing up a resource. An additional 
partition is made available as soon as the number of overflows with the currently 
allocated partitions crosses a threshold value - we do not wait until the end of the 
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sampling or update interval to perform this upsizing. Our results show that as a 
consequence of doing this aggressive upsizing, the dynamic resource allocation results in 
very low performance degradation. The overflow counters used to drive such upsizing are 
activated only on overflows and their small width (a few bits) allow energy dissipations 
within the upsizing/monitoring logic to be kept very small. Dynamic resource allocation, 
as described, relies on the use of traditional implementations of the IQ, ROB and the LSQ 
with simple enhancements for supporting incremental resource allocations, as described 
in [PKG 01]. 
 

Figure 5 (from [PKG 01]) documents the power savings possible through the use of 
dynamic resource allocation schemes for a 4-way (= peak issue rate of 4 instructions per 
cycle) and 6-way superscalar processor. The energy savings realized within the IQ, ROB 
and the LSQ are quite significant - about 40% to 60% on the average in the IQ, 52% to 
65% on the average in the ROB and 38% to 40% on the average in the LSQ. (The savings 
shown factor in power expended within the control and sensing logic for resizing.) 
Further power savings, up to an additional 15% can be realized on top of the savings due 
to resizing if zero byte encoding and circuit innovations are employed [GPGK 01]. These 
savings are realized with a minimal impact on the layout area and with a performance 
penalty of less than 4% on the average. 
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Figure 5. Power savings in the IQ, ROB and LSQ for 4-way and 6-way processors with adaptive resizing
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4.3 Low-Power Cache Design 
 

The bulk of the energy/power dissipation within a cache memory system occurs in the 
course of reading and writing bitcells. Our main approach for reducing the dynamic 
power dissipation within a cache relies on the use of multiple line buffers, as introduced 
in [KG 99] to avoid the readout of data from the cache tag/data arrays. 

In caches with multiple line buffers, shown in Figure 6, substantial power savings 
result when the line accessed can be obtained from one of the line buffers, allowing the 
access of the tag and data arrays to be aborted, thereby saving power. In these caches, the 
tag and data array accesses are started simultaneously with the comparison of the set 
number of the currently accessed address with the set numbers of the lines stored in the 
line buffers. The cache timing with the line buffering mechanism is shown on the right 
half of Figure 6. This is done to avoid any potential extension of the cache cycle time. 
The normal set of tag comparators is used to detect a hit or miss irrespective of where the 
cache line comes from - from a line buffer or from the tag/data arrays. In effect, the line 
buffers act as a smaller cache that is accessed in parallel with the cache. In addition to the 
line buffers, modest investments are made for latches to hold the set numbers associated 
with the contents of each line buffer and comparators to compare the set numbers stored 
in these latches with the set number for the data being accessed. The line buffered caches 
are further enhanced by the use of subbanking and bit line segmentation as described in 
[Itoh 96]. 

 
How does zero byte encoding help the on-chip caches? To get an answer to this, we 

studied conventional on-chip cache organizations as well as on-chip caches with multiple 
line buffers, subbanking and bit-line segmentation as described in [KG 99]. We assumed 
the use of 2 and 4 line buffers and bit line segments spanning 16 consecutive rows for all 
of the on-chip caches. The results of adding zero byte encoding on top of these artifacts, 
averaged over all the SPEC 95 benchmarks, is shown in Figure 7. Notice that the L1 D-
cache dissipates more energy than the L1 I-cache; this is because of the higher sense amp  
dissipations that are inevitable in the 4-way set associative L1 D-cache (as opposed to a 
sense amp dissipation of one-fourth the amount in the L1 I-cache; for the same 
associativity, the L1 I-cache dissipates more energy than the L1 D-cache in general). We 
 

 
Figure 6. A 2-way set-associative cache with 4 line buffers & its timing 
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 assume that as cache lines are filled from memory, zero bytes are dynamically encoded. 
The L2 cache is assumed to be on-chip.  
 

As Figure 7 shows, the L1 I-cache benefits very little from leading zero byte encoding 
(about 5% or so), with the benefits coming from the encoding of the unused literal field 
of register-to-register instructions. The L1 D-cache benefits more substantially from zero 
byte encoding, more particularly for conventional designs than for a design using 4 line 
buffers. The L2 caches also benefit from zero byte encoding. With 4 line buffers, bit line 
segmentation and zero byte encoding, the total dissipation in the cache hierarchy comes 
down to about 415 mW from about 2.2 Watts, representing an overall dynamic power 
savings of about 75%. The proposed Morph design uses 8 line buffers and zero encoding 
of all bytes within the caches to save additional power. 
 

As part of the Morph project, we also investigated the use of morphing the cache 
structure and selective activation and deactivation of regions within the cache to conserve 
dynamic as well leakage power. Leakage dissipations are substantial at low feature sizes 
and with the use of lower supply voltages. Industry estimates often indicate that leakage 
dissipations in memory structures can almost equal the dynamic dissipations [BD 99]. 
Our main approach in reducing leakage dissipations in the caches relies on the selective 
activation and deactivation of regions within each cache. A region is essentially made up 
of a number of consecutive rows or sets. A region could be active (= powered up and 
dissipating leakage power, normal access time), or in the standby mode (powered up to 
retain contents, but with substrate bias applied to reduce leakage, slower access time) or 
completely powered down (using a high Vt device to gate the supply line). Accesses to 
cache regions are dynamically monitored to decide whether a region should be in one of 
the three modes. Our ongoing effort indicates that the approach described here results in a 
leakage power reduction in excess of 70% with less than 5% penalty on the performance. 
Another more obvious approach will be to apply a reverse substrate bias to the entire 
cache array - this is not an attractive solution, since cache cycle times are prolonged and a 
substantial amount of power is expended in maintaining the reverse substrate bias. As a 
bonus, selective activation of cache regions also reduce dynamic power through the use 
of bypass connections to allow bitlines to “skip" the standby or shut-off regions, thereby 
reducing bit line capacitance. 
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A variation of these techniques can also come into play as chips move to the 
processing-in-memory time frame, and significant memory macros can be placed on the 
chip with the CPU core(s). Besides greatly reducing the energy per access (no off chip 
drivers and receivers, and better use of available bandwidth), the already present row 
latches within the memory macro can be used in fashions identical to that of the line 
buffers above. 10% or more of the already reduced energy of such macros can be saved. 
We also showed that the line-buffering technique described for caches can also be used to 
reduce the energy requirements of many register-file based structures in a superscalar 
processor, such as the rename table. 
 
4.4 Issue Rate Modulation and Variable Cluster Microarchitecture  
 

A key part of the Morph project was the development of microarchitectures for 
superscalar CPUs where the intrinsic performance of the core (in Instruction Per Clock 
(IPC)) can be varied dynamically, where the relationship between IPC and Energy Per 
Clock (EPC) is better than the 4-th power, and thus where the energy expended per cycle 
can be throttled back by large factors in times where performance is not important. The 
key to achieving this was to break what typically are common, hugely multi-ported, 
structures within a conventional superscalar CPU into multiple relatively independent 
clusters. Prior work on such "multi-cluster" superscalar microarchitectures [ZK01] 
demonstrated designs with the EPC at the same IPC as the best conventional design, or 
20% more IPC at the same EPC. In the Morph project we carried this multi-cluster 
microarchitecture one step further to allow dynamic control over the number of clusters 
that are active. This allows a system to throttle back on performance needs during 
mission phases where performance is not important, and ride the intrinsic energy gains. 
For those mission portions needing only light processing, energy savings approaching an 
order of magnitude appear possible. 

 

 
The multi-cluster microarchitecture, depicted in Figure 8, offers a substantial savings 

over a conventional superscalar microarchitecture - up to a factor of 2 in energy per 

Figure 8. Multi-Clustered Morph Architecture
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instruction (EPI) at the same performance (as measured by IPC). This, by itself, is 
substantial, and worth including. However, as with conventional designs, the resulting 
EPI is fixed, and significantly higher than that for a simple embedded-class core. The 
energy required to complete a program is thus fixed, even though changing the clock may 
change the power dissipated. 
 

In the Morph effort, this multi-cluster technique was extended to allow the number of 
clusters to be varied dynamically, thus affecting both IPC and EPI. Simulations indicated 
that a 4 cluster design, which can be ratcheted down to 2 or 1 cluster, has an IPC that 
varies by a factor of 1.7 and an EPI that varies even more - by up to 3.4. Thus, in times of 
light performance needs, using the single cluster configuration may require up to 70% 
longer to compute a program at the same clock, but at roughly 1/3 the expended energy. 
If even lower IPCs are acceptable, then additional significant EPI savings are possible, 
including: shrinking the size of the caches, switching the cache timing from single cycle 
to two cycle pipelined, reducing or eliminating branch prediction, reducing or eliminating 
store buffers, or switching programs or data from normal RAM to lower energy/access 
but possibly higher latency RAMs. Given the appropriate circuit library, lowering the 
clock then allows Vdd to be scaled also, slowing the execution (but not changing the IPC) 
but reducing the EPI even further. Another 2X in EPI is thus possible. 
 

In the original multi-cluster research, competing at the very highest performance levels 
was the goal, and thus each cluster was a low-level superscalar machine by itself, with 
significant complexity. This includes significant issue windows and physical register 
files, with significant register renaming (but still less than conventional). In Morph, 
however, we target applications where for large periods of time very little performance is 
needed. EPIs in the range of what can be achieved by the very best of "32-bit embedded 
controllers" are in order.  
 

A revised Morph microarchitecture, termed RuDRA, was developed (Fig. 9) and a 
detailed behavioral simulator constructed.  These simulations used instruction traces 
generated for a PowerPC processor. A simulated L2 cache, when present, was 512K 2-
way set associative. L1, when present, was comprised of one 8-way set associative 4K 
cache bank per cluster. These matched numbers for the PPC testbed at JPL. 
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The clusters themselves were simple in-order pipelined processors. This avoids most 

of the potentially costly comparisons of out of order execution, simplifies internal cluster 
design, and reduces power. A cluster contains a (simple) register file, ALU, and a slice of 
cache/memory access logic.  

 
Because each cluster contains its own register file, there is no centralized register file. 

Instead, each cluster contains a subset of program-visible register values. Instructions 
which are dispatched to, and complete in, that cluster write back to the cluster-local 
register file. These cluster register files can be greatly simplified compared to a 
centralized register file, and require far fewer ports. Ideally, instructions dispatched to a 
cluster only require register values in the cluster's local register file. However, to 
maximize performance and load balancing, it may be necessary to use values in another 
cluster. The Remote Value Bus (RVB) allows such inter-cluster communication. 

 
A “steering” stage dispatches instructions to the clusters using a simple heuristic which 

aims to maximize performance by partitioning instructions to minimize the amount of 
inter-cluster communication, and maximize the amount of parallel execution. This 
steering stage keeps track of which cluster has the most current value of a register, and 

Figure 9. Revised RuDRA Multi-Cluster Architecture

IPC
Clock 1.000 2.000 4.000 8.000
1.000 0.784 1.128 1.653 1.837
0.875 0.787 1.135 1.680 1.842
0.750 0.813 1.270 1.729 1.920
0.625 0.841 1.330 1.860 1.889
0.500 0.871 1.338 1.939 1.963
0.375 0.875 1.332 1.941 1.965
0.250 0.908 1.433 2.030 1.997
0.125 0.943 1.441 2.101 1.819
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uses this data to partition instructions and to instruct clusters when they are required to 
make inter-cluster communication.  

 
The first pipeline stage of the cluster is the operand fetch (OP) stage. This stage is 

responsible for gathering the register operands required for an instruction and resolving 
inter-cluster communication by transferring register values to and from the RVB. The 
steering stage instructs an OP to perform such transfers through an internally generated 
register transfer (RT) instruction. The OP stage sorts incoming instructions into a 
dispatch queue, and register transfer instructions into a separate queue. Both queues are 
serial (FIFO), to avoid out of order issue within the cluster. In any cycle, the OP stage 
may issue one RT or one normal instruction. A normal instruction may issue if their 
operands can be found in the local cluster register file, or if it has already been transferred 
across the RVB. 

 
The Memory Access stage accesses the banked cache of the cluster. Each bank of this 

cache contains a segment of the address space. Cache accesses are assumed to be in-
order, but logic at each bank detects any out of order memory collisions (RAW hazards) 
between loads and uncommitted stores. If such a collision is detected, the pipeline and 
any uncommitted stores are flushed.  

 
For evaluation, the behavioral simulator was run against a series of benchmarks, 

including the MICAS program discussed earlier. It was run assuming 1, 2, 4, or 8 
clusters, and a variety of L2 and main memory latencies to simulate accurately different 
clock rates. Each run gave an IPC, which when multiplied by clock rate gives a 
performance number. The 4 cluster, longest latency, numbers matched relatively well 
with the IPC from the PowerPC used in the testbed, and thus performance for the other 
configurations was ratioed to this value. An initial power model was then used to create 
expected dissipation for each configuration. 
 

The table accompanying Fig. 9 gives the IPC numbers that resulted from the 
simulation, as a function of both relative clock rate and number of clusters. The lower 
clock rates reflect the reduced memory latencies, which in turn increased the IPC 
numbers, as discussed above. The data for the 8 cluster configuration doesn’t behave 
exactly as the others do, primarily because of quirks in the inner loop of the code being 
simulated, and how it fit within the instruction blocks being fetched. 
 
4.5 Reducing the Complexity of Reorder Buffers  
 

As part of the Morph effort, we investigated a variety of techniques for reducing the 
overall complexity and power dissipation in the reorder buffer (ROB), one of the most 
power-consuming components of a superscalar datapath. The first solution investigated 
capitalized on the observation that the bulk of the data dependencies – in excess of 84% 
are satisfied in the course of data forwarding or in the course of reading committed 
results at the time of dispatching. Figure 10 shows the relevant percentages for a 4-way 
superscalar machine, as described in [KPG 02, KPE+ 04a]. This fact can be well  
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exploited in a datapath design that employs a separate architectural register file to hold 
committed values and where a reorder buffer that integrates the physical register file is 

used to hold results that have not been committed. The main idea here is to cache a few 
recently generated results in a small register file (made up of a set of latches, using a 
LRU algorithm or a FIFO replacement algorithm) in an attempt to satisfy the demand of 
instructions that have to read a value that has not yet been committed. With this small 
register-cache in place, the ports for reading non-committed values can be eliminated 
completely from the ROB. For the few instructions that could not obtain a non-committed 
value from the ROB or in the course of forwarding, the existing set of forwarding buses 
are used to forward the result for a second time at the time of committing the result. With 
the use of a 8-entry result cache, a non-negligible power savings – as high as 20% - 
results with only a 4% performance degradation. Details of this technique are described 
in [KPG 02]. Figure 11 shows the power savings for a 72-entry ROB, as detailed in [KGP 
02]. 
 

A second approach for minimizing the energy dissipation in the ROB was explored in 
[KPE+ 03b, KPE+ 04a]. Here, power savings result from a distribution of the ROB 
structures across the function units in a manner similar (but not identical) to what is used 
in multi-clustered datapaths and using register-caches with each distributed instance. 
 
4.6 Exploiting Short-Lived Variables 
 

A significant fraction of the results produced in a modern superscalar processor happen 
to be short-lived in the sense that by the time that the value is produced, the 
corresponding destination architectural register has been renamed. In excess of 80% of 
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the results are short-lived, for the processor configuration reported in [PKE+ 03b]. This 
fact can be exploited in reducing the energy dissipation of a superscalar datapath as 
follows. First, short-lived results – which are detected one cycle prior to their writeback, 
can be kept in a small cache and they do not need to be written to the larger ROB or 
physical register. Second, the values so cached do not need to be written to the 
architectural register file, thus saving additional energy. The only reason for holding on 
to the short-lived values in the small cache has to do with the handling of branch 
mispredictions or for implementing precise interrupts. As shown in [PKE+ 03b], the 
energy savings in the ROB/ARF can be about 20% or so for typical configurations. 
 
4.7 Associated Circuit-Level Techniques to Improve Energy Savings 
 

As part of our Phase I Morph effort, we have also devised new circuits that add to the 
energy efficiency of a superscalar datapath. One of these is a comparator that dissipates 
energy predominantly only on a match of the bit patterns being compared [KGPK 01, 
PKE+ 03c]. Traditional comparators (including those in content-addressable RAMs - 
CAMs), on the other hand, employ circuit designs that dissipate energy on a mismatch in 
any bit position. Comparators are used extensively in modern superscalar datapaths to 
implement associative data forwarding, within issue queues in register mapping, to detect 
memory dependencies in writeback queues, etc. In all of these structures, the number of 
mismatches far outweighs the number of matches. Significant energy savings are thus 
possible with the use of our dissipate-on-match comparators. For example, we have 
shown in [KGPK 01] that power dissipations in the issue queue can be reduced by about 
15% to 20% on the average with the use of our comparators. 

 
Additional circuit-level techniques were also explored in the Morph project for 

improving the overall efficiency of the microarchitectural techniques discussed in 
Sections 4.1 through 4.6. These included the design of circuits for encoding data on buses 
for reducing energy dissipation in the interconnections, circuits for reducing the energy 
dissipations within TLBs, register files and caches. These circuits are described in many 
of the papers that relate to the techniques presented in Sections 4.1 through 4.4 and 
Section 4.6. 
 
5. Intelligent Data Placement Modules 
  

Additional power savings at the system level can be realized with the development of 
an intelligent data placement module that places and moves data intelligently in the 
memory/cache hierarchy to minimize power/energy dissipations. Embedded systems 
usually have a variety of memory components within the memory hierarchy: DRAM of 
various sorts, ROM, EEPROM, etc. All of these offer differing latency/energy per access 
characteristics. To date, embedded systems have treated such mixed hierarchies only in 
terms of data retention, or for speed, but not for power. Given that some technologies 
such as spin tunneling cells, or on-chip memory macros, may have better energy per 
access characteristics by literally orders of magnitude over conventional off-chip 
memory, techniques for trying to utilize such mixed memories need to be developed. 
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In the Morph project, the MICAS/ERIC benchmark was used with a Shade based tool 
to analyze the address trace put out by a CPU core with and without a local cache, and 
targeting two separate "classes" of memory parts: a fast but high power memory and a 
slower but more energy efficient part. The storage was assumed to be divided into pages 
of 4KB each, with whole pages allocated to one type of memory. Total memory traffic, 
instructions only, and data only were all considered. In these initial studies, latency was 
not a concern - the emphasis was on the potential for peak energy savings. We assumed 
we could statically allocate the N most frequently referenced pages to the low energy 
memory, and the rest to high-energy memory. Then by assuming a ratio of energy per 
access between the two memory types, effective energy savings was computed as a 
function of N, with different energy ratios from 2:1 to 16:1 as parameters. The results 
were striking - for as little as 80-100 pages (<400KB) of "low energy" memory (of any 
ratio) at least one-half of the difference between the high and low energy memories could 
be saved. For a 16:1 memory system, this is just about the energy of the conventional 
memory. 

 
The impact of this on embedded systems is two-fold: even small amounts of very 

energy efficient memory added to a system can result in large energy savings, especially 
when the system is ratcheted down from peak performance for quiet periods as is possible 
with Morph, and second, to achieve this requires hooks in the run-time that permits 
identification of these key pages, and under what conditions they should be remapped. 

In Phase II we will consider both adding on-chip memory and building a run-time that 
can so adapt. We will also investigate the future potential for integrating novel low 
energy memories being developed elsewhere in the Power Aware Computer and 
Communication (PACC) program such as by Nonvolatile Memories. 

 
The microarchitectural-level techniques of Sections 4.5 and 4.6 for reducing the energy 

dissipation can also be viewed as a dynamic scheme that places data intelligently within 
the memory hierarchy of the datapath. The use of caches with multiple line buffers, as 
described in Section 4.3, can also be viewed as a technique that moves data within a 
memory hierarchy in an intelligent manner in response to the program dynamics. 
 

An original goal in the Morph project was to design APIs to assist in the placement 
and explicit movement of data in the storage hierarchy. This was not done, as existing 
primitives for page allocation and mapping, pinning pages and memory copying could be 
used to support the intelligent data placement techniques. 
 
6. Kernel-Level Facility for Controlling Energy-Efficiency 
 

In the course of the Morph effort, we investigated a feedback based control technique 
for adapting the processor performance (through voltage and frequency scaling) for 
stretching the processing time to a target value, given an energy source whose capacity 
decreases with use (such as a battery) [MFK 02]. The goal is basically to scale down the 
energy requirement (and performance) of the processor to allow the processing to 
continue processing for a pre-specified period. 

 



 

  

 

30

Formally stated, if E is the initial energy capacity of the battery and the targeted 
processing time is T, then given that the energy left in the battery is Ef, then the goal of 
the approach is to select an operating point with an average power dissipation of P such 
that P.T ≤ (E - Ef). The closer P.T approaches (E - Ef), the better is the performance level. 
In reality, a few things complicate the implementation of this simple policy. First, 
applications are dynamic in nature and their power requirements change over time, so 
maintaining a steady power consumption level of P is difficult. Second, kernel facilities 
monitor power consumptions and battery capacity at discrete intervals. Last, but not the 
least, real processors have discrete operating points as only a finite combination of 
voltage and frequency settings are available. 

 
The approach taken in our strategy is to measure the energy expended and the battery 

capacity on a continuous basis and adjust the operating point (and power/performance) of 
the processor to correct for deviations from the ideal power level of P as given by the 
above equation. What results is thus a feedback based power management approach. The 
choice of a damping factor of a suitable value is critical in such a system for guaranteeing 
stability. Details of the proposed scheme are described in [MFK 02], which also describes 
a prototype implementation on the Linux kernel on an AMD processor (that supports 
both frequency and voltage scaling). As reported in [MFK 02], the prototype system is 
successful in meeting the battery life objective over a wide range of workload. 

 
Extensions to the proposed scheme for handling battery recharging and for handling 

real-time tasks are also described in [MFK 02]. 
 

7. Final Results  
 

The large spectrum of solutions for improving the energy-efficiency of computing 
systems in the Morph project precludes the assessment of the impact of combining all of 
these techniques in a single system. Given this, we could only estimate the effect of only 
a handful of the microarchitectural and circuit level solutions in reducing the power 
dissipation of a typical processor.   We will do so in two steps.  

 
7.1 Datapath Alone 
 

Figure 12 shows the result of factoring in the datapath changes– without the use of 
clustering and traditional frequency and voltage scaling techniques. The 3X average 
power savings result in less than 5% performance degradation. Voltage scaling and 
frequency scaling can add further savings, but will result in a lower than peak 
performance. At the system level, we expect another 2X to 3X power savings from the 
use of the data mapping techniques and the use of an intelligent run-time system. 
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7.2 Multi-Cluster 
 

Evaluating an architecture such as RuDRA is difficult on an individual program, 
because you never know when, and for how long, different configurations ought to be 
employed. Consequently, the approach taken in Morph was to use the trace data from the 
testbed to simulate complete mission scenarios at a high level. There were three steps to 
this analysis process. First was processing of the time stamp logs from the test bench to 
the point where intervals of idle time could be identified. Second was development of 
sets of EPI/IPC configuration files that represented each of the different power 
management techniques. Finally, these two were combined to simulate a run-time that 
could dynamically change the CPU cluster configuration to optimally minimize energy 
usage. 

The analysis process started with the Deep Impact scenario timestamp logs discussed 
earlier. These were first post-processed to replace all calls to the logging and simulation 
support routines by idle periods (since in a real flight such activities would not be 
present), and to collapse neighboring idle periods together into single longer idle periods. 
Thus each idle period is surrounded on both sides by the description of a task that was 
called. Each task entry was also augmented by both the task priority and overall 
execution time. 

From these traces, sets of processing “intervals” were identified, where one interval 
starts at the end of an idle period, after which a string of one or more real tasks were 
executed, and terminated with some other idle period. For each such interval, the overall 
busy and idle periods are computed. The key statistic to take from each such interval is 
the ratio of the total interval time to the processing time. This ratio indicates by how 
much a factor the CPU’s performance could be slowed down during the processing 
period to eliminate the idle period. 

Figure 12. Relative power dissipations in the Morph CPU compared to the base case on a 
Component-by-component basis (clock power included within each major component) 
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▪ 4-way superscalar, 32 KB L1 I- and D- caches, 256 KB L2 cache 

▪ All power savings in the Morph CPU are primarily from microarchitectural innovations: 
  - zero-byte encoding 
  - caches w/ 8 line buffers 
  - dynamic resizing of IQ, LSQ, and ROB 
  - dissipate-on-match comparators 
  - encoded interconnection buses 

▪ Further savings from clustering and voltage/frequency scaling are not shown. 
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The second step involved computing for each of three comparative power management 
techniques the potential power savings, along with effects on performance. The RuDRA 
specific techniques simulated included: 

• variation of number of clusters only, with a constant clock and Vdd. 

• variations of clusters and clock, with constant Vdd. 

• variation of all three, with the Vdd to power changes mirroring what was observed 
from an Athalon microprocessor that included dynamic voltage and frequency 
control. 

 
As a baseline, some conventional techniques using only Vdd, only clock, and then 

both, were also included. In all cases, both the power and energy savings were 
normalized onto a relative basis so that “peak performance” would be unity, and thus 
relative power savings could be judged. This process was most complex for the variable 
cluster configuration, where extensive simulations were necessary for both variations in 
active cluster count, and in relative access times to memory. Figure 13 graphs these 
configuration points for all six techniques. Note that the Full/Doze configuration only has 
two points: one at 100% performance (Full), and one at 0% (Doze). 
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It should be noted that in general the RuDRA variable cluster approaches are the best in 
terms of relative power per performance, and in fact are the only techniques that allow 
switching the machine into very low performance regions - exactly the regions where we 
expect to see real computers to be spending the bulk of their time on a real mission. 
 

The final step was to build a simulator that would process the intervals one at a time, 
and for each interval determine for each management technique which configuration 
would provide the best energy savings, given the idle time available in the current 

Figure 13. Power/Performance Configuration Points
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interval. Such savings were then integrated over all intervals to compute overall energy 
for the scenario. 
 

While this corresponds to an “oracle” scheduler, where the end of each period is 
known (particularly the idle time available), it does give a solid upper bound on the 
maximum potential of each approach. Further, any real-world idle predictor would tend 
to affect all such management techniques equally, keeping the relative benefits roughly 
the same. Experimentation with some more realistic idle predictors has begun, with some 
relatively good correlation with the results presented here. 

 
The key output of the exercise is a projection of the overall energy savings over the 

time period of each scenario. Figure 14 summarizes results for all scenarios and all six 
techniques. The “Energy Reduction Factor” is the factor by which the total energy 
expended over the scenario is reduced using that technique over a baseline full power, 
constant full performance run.  
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As can be seen, the variable cluster technique, when paired with clock reductions or 

clock and Vdd reductions, handily beats all other approaches for virtually all scenarios, 
and sometimes by large factors. 

 
Perhaps even more revealing is Figure 15, where these energy reduction factors are 

graphed against the baseline processing load of each scenario. Here the advantages of the 
variable cluster techniques become even more pronounced, especially for those scenarios 
where the overall processor load is quite small, especially below 10%. This is exactly the 
region where we expect most of a real mission to be spent, indicating that over the long 
run, the technique can in fact deliver significant energy, and power, savings to the 
spacecraft. 

Figure 14. Energy Reduction Factors as a Function of Scenario 
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In addition, the variable cluster techniques are superior, even during those scenarios 

of very high usage. 
 
7.3 Putting It All Together 
 

As a final exercise, we combined all these techniques into a very preliminary estimate 
of overall savings, pictured in the following table. Here we start with a baseline PPC chip 
with L2 cache, and memory as found in the testbed. To each of these we applied a series 
of estimated power reduction factor based on the above analyses. First were the 
independent factors such as dataflow improvements. Next, for the CPU we assumed a 
90/10 ratio processing at low IPC versus high IPC, and developed power reduction 
numbers based on the RuDRA results. This gave about a 6X power reduction, without 
Vdd scaling. Factoring in Vdd scaling gave the potential for another factor of 4. 
 

CPU L2 Mem Watts
Baseline JPL PPC SBC (W) 2.9 2.4 2.3 7.6
Independent Factors 3 2.5 2 3.1
Var. Cluster  (Hi IPC) 1.5 1 1 6.6
Var. Cluster  (Lo IPC) 3 3 3 2.5
Combined Hi IPC 3 2.5 2 3.1
Combined Lo IPC 6 7.5 6 1.2
90/10 Rule-constant clock 5.7 7 5.6 1.3
Equivalent Power (W) 0.51 0.34 0.41 1.26
16X Clk - 2X Vdd 64 16 16
90/10 w'clk scale (W) 0.103 0.114 0.137 0.354  

 
Table 2.  Preliminary Estimate of Overall Savings 

 
One caveat is that this does not consider static power leakage, but the overall numbers 

are still compelling. 

Figure 15. Energy Reduction Factors as a Function of Processor Load 



 

  

 

35

 
8.0 Specific Recommendations 
 

Based on our study of the highly dynamic nature of the Deep Impact Applications on 
our testbed and our assessments of the various power savings techniques developed in the 
current effort, we offer the following recommendations to the designers of the next 
generation of computing systems for the deep space probes: 
 
1) Use the following techniques in the order given to reduce the power requirements of 
the processor: 
 

• Zero-byte encoding 
 

• Caches with multiple line buffers and facilities for leakage reduction 
 

• Dynamic allocation of datapath resources 
 
- all of these techniques can be retrofitted into an existing design relatively easily. 
 
2) Use voltage scaling and frequency scaling wherever possible in conjunction with a 
suitable kernel facility that takes into account real-time constraints. 
 
3) Develop and use a data allocation module that places data intelligently in the memory 
hierarchy. 
 
4) Expose the dynamic resource allocation hooks to the compiler and develop a compiler-
based technique to match resource allocations to various statically-analyzed phases of the 
compiler. 
 
5) Accommodate any additional processing need by using a variable cluster design and/or 
by increasing the sizes of the on-chip caches. The amount of hardware changes needed by 
this technique is relatively more complex. 
 

As the next step along this path, we feel strongly that a three-level approach to 
developing some demonstration chips is most reasonable. These projected chips include: 
 

• • An L2 cache macro designed not for density or speed, but to demonstrate the energy 
savings possible by the techniques developed in Morph. This macro would be 
packaged in a chip format that allows insertion into the L2 cache slot of JPL’s PPC 
SBC test bench. 

• • A modified baseline core with the dynamic zero-suppression and resource allocation 
techniques developed by Morph. 

• • A variable cluster version of the above, built up from multiple copies of the modified 
baseline core, and coupled with the low power cache macros for the on-chip L1 
caches. 
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9.0 Team Members 
 

The project involved three organizations, the Computer Science and Engineering 
Department of the University of Notre Dame, the Computer Science Department of the 
State University of New York at Binghamton (a major campus of the State University of 
New York system), and the Center for Integrated Space Microsystems (CISM) of the Jet 
Propulsion Laboratory (JPL) of the California Institute of Technology. Notre Dame 
served as lead organization. 

 
For Notre Dame, the PI was Dr. Peter M. Kogge. Other faculty members included Dr. 

Vincent Freeh (now at North Carolina State University) and Jay Brockman. Graduate 
students active on the project included Victor Zyuban, Arun Rodrigues, Virgil 
Andronache, Jason Zawodny, and Robert J. Minerick. 

 
For SUNY Binghamton the PI was Dr. Kanad Ghose, with graduate students Dmitry 

V. Ponomarev, Gurhan Kucuk, Andrew Flinders, and Oguz Ergin. 
 
For JPL the PI was Dr. Nikzad (Benny) Toomarian, who was assisted by Nazeeh 

Aranki, with significant participation by Jeffrey  Nankung, Jagdish Patel, Sanjay Patel, 
Savio Chau, and Mohammed Mojarradi.   
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